
Chapter 19. LAVA R3X: the humanoid
that walks and talks
So far in this book, you’ve built vehicle robots, animal robots, and machines, but perhaps one of

the coolest robot projects you can make with your EV3 set is a humanoid robot that walks on

two legs. In this chapter, you’ll build and program LAVA R3X, shown in Figure 19-1. LAVA

R3X walks on two legs controlled by Large Motors, and it can move its head and arms using

the Medium Motor.

https://www.safaribooksonline.com/library/view/the-lego-mindstorms/9781457185366/ch19.html#lava_r3x_walks_around_on_two_legs_while

Figure 19-1. LAVA R3X walks around on two legs while moving its head and arms, and it greets you when you shake

its hand.

Once you’ve made the robot walk, you’ll be challenged to expand the program to make the

robot interactive and lifelike by using the techniques you’ve learned throughout this book.

LAVA R3X is able to walk by continuously shifting its weight to one foot while moving the

other foot forward. A mechanism in each leg turns the continuous forward motion of the motor

into an alternating forward and backward motion of the foot and an alternating left and right

tilting motion of the ankle (see Figure 19-2).

Figure 19-2. As the motor in each leg makes one complete rotation, the foot moves back and forth and the ankle tilts

to the left and to the right.

For the robot to walk in a stable manner, the mechanisms of both legs must be in the exact

opposite position, and the motors should turn at the same speed. When these requirements are

met, one foot is tilted so that it doesn’t touch the ground while it moves forward, while the other

foot is tilted so that it carries the robot’s weight while it pushes backward, thereby propelling

the robot forward.

As the motor in each leg makes one rotation, the mechanism moves left, right, forward, and

backward, after which it’s back in its initial orientation, having completed one step.

You’ll use the Touch Sensor between the robot’s legs to place the mechanisms in opposite

positions, just as you did for ANTY’s motors in Chapter 13, and you’ll create a speed controller

to ensure that both motors turn at the same speed.

building the legs

First, you’ll build the robot’s legs and create My Blocks to make the robot walk and turn. Next,

you’ll build the robot’s upper body and create a program to make the robot interact with its

https://www.safaribooksonline.com/library/view/the-lego-mindstorms/9781457185366/ch19.html#as_the_motor_in_each_leg_makes_one_compl
https://www.safaribooksonline.com/library/view/the-lego-mindstorms/9781457185366/ch13.html

surroundings using sensors. Select the pieces you’ll need for the robot, shown in Figure 19-3,

and then follow the instructions on the next pages.

Figure 19-3. The pieces needed to build LAVA R3X. You should have a number of leftover pieces after you’ve built

the legs; you’ll use them to build the robot’s head and arms later.

https://www.safaribooksonline.com/library/view/the-lego-mindstorms/9781457185366/ch19.html#pieces_needed_to_build_lava_r3xdot_you_s

making the robot walk

You’ll now create several My Blocks to place the robot’s legs in opposite positions, to make the

robot walk forward, and to make the robot turn to the left. You’ll also make a small program to

test each block.

Testing these blocks without the robot’s top heavy upper body makes troubleshooting easier

because the robot is less likely to fall over. Once the robot walks in a stable manner using the

My Blocks, you’ll be ready to complete the design.

my block #1: reset

Each time a motor makes one complete rotation, the mechanism around this motor presses the

Touch Sensor once (see Figure 19-4). LAVA R3X can use this sensor information to place the

left and right leg in opposite positions.

Figure 19-4. As each of the motors makes a rotation, it pushes a black angled beam against a grey disk, which in
turn presses the Touch Sensor. The tan axle ensures that the grey disk remains aligned properly.

Because the robot can’t detect which of the two leg mechanisms is pressing the Touch Sensor at

a given moment, it should first position the legs in such a way that neither mechanism presses

the sensor. To accomplish this, the robot moves the motors forward until the Touch Sensor is

https://www.safaribooksonline.com/library/view/the-lego-mindstorms/9781457185366/ch19.html#as_each_of_the_motors_makes_a_rotationco

released, and then it stops the motors. Sometimes when the motors stop, a small amount of play

in the mechanism causes the Touch Sensor to become pressed again. To make sure that the

sensor stays in the released position, the robot pauses for 0.1 seconds. Then, it checks the state

of the Touch Sensor again with a Loop block. If it’s still released after this short pause, the loop

ends; if the sensor has become pressed in the meantime, the loop runs again.

Once the robot knows that neither mechanism is pressing the Touch Sensor, it continues the

reset procedure. First, it rotates the left motor (motor D) forward until the Touch Sensor is

bumped, and then it rotates the motor 90 degrees farther forward. Next, the robot rotates the

right motor (motor B) forward until the Touch Sensor is bumped, and then it rotates the motor

90 degrees backward so that the leg mechanisms are now 180 degrees apart, ready to begin

walking. When the legs are in place, both Rotation Sensors are reset to 0. This means that while

walking, the mechanisms are in opposite positions as long as the Rotation Sensor values of both

motors are equal. Resetting the sensors will also make it easy to return to this starting position

later on.

Create the Reset My Block that performs these actions, as shown in Figure 19-5. You’ll use it at

the start of each program for LAVA R3X.

my block #2: return

Throughout the program, LAVA R3X will not only walk straight forward but also turn to the

left. After the robot turns, the leg mechanisms may no longer be in opposite positions, so you’ll

have to return the legs to these respective positions before the robot can continue to walk. But

running the Reset block after each turn is impractical because it takes a long time to run.

Fortunately, you can achieve the same effect by rotating each motor back to its 0 position.

To make a motor return to its starting position, the robot should measure its current position and

rotate backward by the measured amount. For example, if a motor has turned 25 degrees

forward, it has to turn 25 degrees backward. If the motor has made more than one rotation, it

has to rotate backward only by the number of degrees that exceeds a whole number of rotations

(see Figure 19-6). For example, if the sensor measures 450 degrees, the motor should rotate

backward by only 90 degrees so that the sensor eventually measures 360 degrees. In this motor

position, the foot has the same orientation as if the sensor measured 0 degrees, so the result is

the same.

You can calculate the amount by which the position exceeds a whole number of rotations with

the modulo operator, %. The modulo operator gives the remainder after one number is divided

by another. For example, 7 divided by 3 gives 2 with a remainder of 1. That is, 7 % 3 = 1. The

modulo operator is available in the Advanced mode of the Math block.

You can calculate the required number of degrees by taking the remainder of a division by 360.

For example, 450 % 360 = 90.

https://www.safaribooksonline.com/library/view/the-lego-mindstorms/9781457185366/ch19.html#configuration_of_the_blocks_in_the_reset
https://www.safaribooksonline.com/library/view/the-lego-mindstorms/9781457185366/ch19.html#when_a_motor_turns_forward_left_parenthe

Figure 19-5. The configuration of the blocks in the Reset My Block (left) and the completed My Block (bottom right)

Figure 19-6. When a motor turns forward (blue arrow), it can return to the 0 position (0°) by measuring the current

position (90°) and turning backward (green arrow) by the same amount. If the motor has made more than one

rotation, it doesn’t have to rotate all the way backward, but only the number of degrees that exceeds a whole number
of rotations, as shown on the right (450° – 360° = 90°).

In other words, full rotations are removed from the number so that a smaller number of degrees

remains (a number less than 360 degrees). You’ll use this remainder to return the mechanism to

its starting orientation.

Create the Return My Block that makes both mechanisms return to their starting orientation, as

shown in Figure 19-7.

NOTE

For division (÷), the Math block uses the slash symbol (/). For multiplication (×), it uses the asterisk (*).

The modulo operator is represented by the percent sign (%). Instead of typing each symbol, you can select

it from the list that appears when you enter the equation.

my block #3: onsync

To make the robot walk after the leg mechanisms have been placed in opposite positions, the

robot must turn both motors forward at 20% speed (34 rpm). A Move Steering block in On

mode might seem like a good candidate for this task, but slight speed deviations would

eventually cause one motor to fall behind the other one so that the leg mechanisms would no

longer be in opposite positions. Therefore, you’ll have to make your own substitute that keeps

the motors synchronized. That is, you’ll have to create a block that turns both motors at 20%

speed on average while ensuring that the Rotation Sensor value of motor D is (almost) equal to

the Rotation Sensor value of motor B.

To accomplish this, you’ll make a motor run a little faster than 20% speed if it falls behind the

other one, and you’ll make the motor that’s ahead turn a little slower than 20%. The farther the

motor positions are apart, the larger the speed adjustment you’ll make. For example, if motor B

measures 790 degrees while motor D measures 750 degrees, you’ll make motor D turn at 22%

speed and motor B at 18% speed so that motor D can catch up with motor B.

To calculate the speed adjustment (2%, in this case), you first determine the difference between

the two motor positions by subtracting the position of motor D from motor B (790 – 750 = 40

degrees, in this example). As in the Return My Block, you apply a modulo 360 operation to this

number. That’s because if a motor falls behind for more than one rotation, it is much easier for

the motor to catch up by turning only the amount that exceeds a whole number of rotations (you

get the same result with less effort). Place and configure the blocks that do this, as shown

in Figure 19-8.

https://www.safaribooksonline.com/library/view/the-lego-mindstorms/9781457185366/ch19.html#configuration_of_the_blocks_in_the_retur
https://www.safaribooksonline.com/library/view/the-lego-mindstorms/9781457185366/ch19.html#step_1_the_first_blocks_in_the_onsync_my

Figure 19-7. The configuration of the blocks in the Return My Block (left) and the completed My Block (right)

Figure 19-8. Step 1: The first blocks in the OnSync My Block calculate the difference between the two motor

positions

You now have the number of degrees by which motor B is ahead of motor D. Sometimes this

difference is greater than 180 degrees or less than –180 degrees. For example, motor B might be

220 degrees ahead of D. In these cases, you’ll subtract 360 degrees (220 – 360 = –140, in this

example) to find a more efficient rotation. In other words, you can now say that motor B is 140

degrees behind motor D. Because the motors rotate in a circle, the meaning is exactly the same,

but the required speed adjustment will be less, and the movement will be less erratic.

Similarly, if the difference is less than –180 degrees, you’ll add 360 degrees to the difference

between the motor positions. Use Compare blocks to apply these steps in the program

(see Figure 19-9). The output of the first Compare block is true (1) if the difference is greater

than 180 degrees and false (0) if it’s not. For true, the Math block subtracts 1 × 360 = 360 from

the difference; for false, it subtracts 0 × 360 = 0 from the difference, therefore leaving it

unchanged. The second set of Compare and Math blocks works the same way, except it adds

360 degrees if the difference is less than –180 degrees.

Now we have the difference in degrees between motor B and motor D, and the number is

adjusted to be the shortest distance between the two motor positions. For a difference of 40

degrees, we want a speed adjustment of 2% for each motor, so we divide the difference by 20

https://www.safaribooksonline.com/library/view/the-lego-mindstorms/9781457185366/ch19.html#step_2_these_blocks_further_process_the

before adding it to motor D’s speed and subtracting it from motor B’s speed (see Figure 19-10).

Turn the blocks on the Canvas into a My Block called OnSync, as shown in Figure 19-11.

The OnSync My Block may look complicated, but its function is straightforward. Just

remember that when you place it in a Loop block, it functions like a Move Steering block in On

mode, but it ensures that both motors stay synchronized by adjusting the motor speeds when

one gets ahead of the other. This function is required for LAVA R3X to walk properly.

Figure 19-9. Step 2: These blocks further process the difference between the two motors to find the shortest distance

between the two motors. This distance is found by subtracting 360 degrees from the difference if it is greater than
180 degrees and adding 360 degrees to the difference if it is less than –180 degrees.

Figure 19-10. Step 3: To get the speed adjustment, you divide the difference between the motor positions by 20.

Then, you add the adjustment to motor D’s speed to make it turn faster and subtract it from motor B’s speed to make

it turn slower. (The block also works if motor D is ahead of B: The difference becomes negative, and motor B will
turn faster to catch up with motor D.)

https://www.safaribooksonline.com/library/view/the-lego-mindstorms/9781457185366/ch19.html#step_3_to_get_the_speed_adjustmentcomma
https://www.safaribooksonline.com/library/view/the-lego-mindstorms/9781457185366/ch19.html#step_4_turn_the_blocks_into_a_my_block_c

Figure 19-11. Step 4: Turn the blocks into a My Block called OnSync.

my block #4: left

LAVA R3X can turn left by rotating the right motor backward while keeping the left foot in a

fixed position. The fixed position (120 degrees behind the starting orientation) is chosen such

that the left foot just touches the ground each time the motor on the right makes one rotation.

Each time the left foot touches the ground, the robot drags itself to the left by a small amount.

The amount the robot turns varies depending on the type of floor the robot is on, but rotating the

right motor backward for 10 rotations makes the robot turn left by roughly 90 degrees.

To ensure that the My Block works regardless of the current position of the motors, place a

Return block at the start and end of the My Block. Create the Left My Block, as shown

in Figure 19-12.

taking the first steps

The WalkTest program uses the My Blocks to make LAVA R3X repeatedly walk forward for

15 seconds and turn to the left (see Figure 19-13).

Place the robot on a flat, smooth surface, like a wooden floor, and run the program. The Reset

My Block at the start places the legs in opposite positions. A beep played by a Sound block in

the Reset My Block indicates that the reset procedure is complete, so the robot is ready to begin

walking. The inner Loop block with the OnSync My Block makes the robot walk forward for

15 seconds, and the outer loop repeats the walking forward and turning behavior.

NOTE

If the robot doesn’t seem to walk properly, visit http://ev3.robotsquare.com/ to see a video of how the robot

should work and to download the ready-made program so you can compare it to your own.

Figure 19-12. The configuration of the blocks in the Left My Block (left) and the completed My Block (right)

https://www.safaribooksonline.com/library/view/the-lego-mindstorms/9781457185366/ch19.html#configuration_of_the_blocks_in_the_left
https://www.safaribooksonline.com/library/view/the-lego-mindstorms/9781457185366/ch19.html#walktest_program
http://ev3.robotsquare.com/

Figure 19-13. The WalkTest program

DISCOVERY #123: WALK MY BLOCK!

Difficulty: Time:

Can you create a My Block that makes the robot walk forward for a given number of seconds? Create a My

Block called Walk with one Numeric input called Seconds, as shown in Figure 19-14.

HINT

Turn the inner Loop block of Figure 19-13 into a My Block, and use the Numeric input to control how long

the Loop block repeats.

FIGURE 19-14. WALK MY BLOCK

DISCOVERY #124: REVERSE!

Difficulty: Time:

Can you create a modified version of the OnSync My Block that allows LAVA R3X to walk backward?

Make the motors move at –20% speed, instead of 20% speed, while keeping the motors synchronized.

HINT

https://www.safaribooksonline.com/library/view/the-lego-mindstorms/9781457185366/ch19.html#walk_my_block
https://www.safaribooksonline.com/library/view/the-lego-mindstorms/9781457185366/ch19.html#walktest_program

All you need to do is create a copy of the OnSync My Block (call it OnRev) and change two values. Which

values determine the average speed of the motors?

DISCOVERY #125: RIGHT TURN!

Difficulty: Time:

Create a My Block called Turn with one Logic input value called Direction, as shown in Figure 19-15.

Make the robot turn to the left if you choose true; make it turn right if you choose false. Substitute the Turn

My Block for the Left My Block in the WalkTest program to test it.

FIGURE 19-15. TURN MY BLOCK

building the head and arms

Now build the robot’s head and arms and attach them to the robot using the instructions on the

following pages. When you’re ready, verify that the moving elements of the arm mechanism

don’t interfere with the cables on top of the EV3 brick. To test this, manually rotate the axle

connected to the Medium Motor and rearrange the cables if necessary.

https://www.safaribooksonline.com/library/view/the-lego-mindstorms/9781457185366/ch19.html#turn_my_block

controlling the head and arms

Having finished building the robot, you’re ready to create a program that makes the robot walk,

move its head and arms, and respond to its environment.

You control the movement of the arms and the head with the Medium Motor: Turning the motor

forward makes the head and the arms move to the right; turning the motor backward makes

them move to the left.

my block #5: head

To make it easier to control the movement of the head and arms, you’ll create a My Block and

place it parallel to the main walking program.

The Head My Block first places the Medium Motor in a known position by rotating the head all

the way to the right. Then, it continuously makes the head move left and right, as shown

in Figure 19-16. This movement allows the Infrared Sensor to see obstacles to its left and right

in addition to obstacles ahead of it.

avoiding obstacles and responding to handshakes

Now that you’ve made the My Blocks, it’s easy to create programs that make the robot walk

and respond to sensors. For example, you can change the inner Loop block of

the WalkTest program to make the robot walk forward until the Infrared Sensor sees an obstacle

instead of walking forward for 15 seconds.

Figure 19-16. The configuration of the blocks in the Head My Block (left) and the completed My Block (right)

The final program will make the robot walk around while avoiding obstacles and will make it

respond to handshakes. If you shake the robot’s right hand, the robot will stop walking, say

“Hello, good morning,” and then continue walking. If the robot sees an obstacle, it will say

“Detected” and then turn to the left.

RESETTING THE LEGS AND MAKING THE HEAD MOVE

https://www.safaribooksonline.com/library/view/the-lego-mindstorms/9781457185366/ch19.html#configuration_of_the_blocks_in_the_head

The program begins by placing the legs in opposite positions with the Reset My Block. Then, it

runs a loop that makes the robot walk and respond to sensors.

As the robot walks, it moves its head left and right using the Head My Block attached to its own

Start block (see Figure 19-17). This configuration makes it possible to control the head and the

legs independently: You can change the behavior of either sequence of blocks without worrying

about interfering with the other sequence. You can change the behavior of the head by

modifying the Head My Block, and you can change the walking behavior by changing the

blocks in the Loop block.

Create a new program called ObstacleAvoid, and add the blocks shown in Figure 19-17.

WALKING UNTIL ONE OF TWO SENSORS IS TRIGGERED

Now you’ll add blocks to the main loop that make the robot walk forward until it sees an

obstacle or detects a handshake (see Figure 19-18).

The robot walks forward by moving the Large Motors forward with the OnSync My Block. The

block is placed in a loop so that the motor speed continuously adjusts to keep the motors

synchronized. The loop runs until the Infrared Sensor is triggered (it detects an obstacle), until

the Color Sensor is triggered (it detects a handshake), or until both sensors are triggered

simultaneously.

Figure 19-17. Step 1: These blocks place the legs in opposite positions and make the robot’s head move. Note that
the Loop block inside the Head My Block runs indefinitely so that the head keeps moving left and right.

https://www.safaribooksonline.com/library/view/the-lego-mindstorms/9781457185366/ch19.html#step_1_these_blocks_place_the_legs_in_op
https://www.safaribooksonline.com/library/view/the-lego-mindstorms/9781457185366/ch19.html#step_1_these_blocks_place_the_legs_in_op
https://www.safaribooksonline.com/library/view/the-lego-mindstorms/9781457185366/ch19.html#step_2_the_inner_loop_makes_the_robot_wa

The Color Sensor block is able to detect a handshake by comparing the Reflected Light

Intensity to a threshold. If the sensor value is greater than 10%, the robot sees your hand and the

output is true. If the value is 10% or less, the sensor doesn’t detect your hand and the output

is false. Similarly, the Infrared Sensor block is configured to output true if a proximity

measurement less than 50% is detected; otherwise, it outputs false.

A Logic Operations block compares both logic values. The output is true if at least one input

value is true, causing the loop to end.

RESPONDING TO THE TRIGGERED SENSOR

The robot is now ready to respond to the sensor that was triggered. If the Infrared Sensor was

triggered, you’ll make the robot say “Detected” and turn to the left. If the Color Sensor was

triggered, you’ll make the robot temporarily stop walking and say “Hello, good morning.”

After the loop completes, you can determine which sensor caused the loop to end by looking at

the output value of the Infrared Sensor block: It’s true if the Infrared Sensor was triggered, and

when it’s false it means that the Color Sensor was triggered. (Because the loop has ended

somehow and the Infrared Sensor wasn’t triggered, you know that the Color Sensor must have

been triggered.)

Use a Switch block to decide which blocks to run based on this value, as shown in Figure 19-

19.

Even though it’s unlikely, the loop may also have ended because both sensors were triggered at

the same time so that the outputs of both Sensor blocks are true. Because the output of the

Infrared Sensor is true, the program simply runs the blocks at the top of the switch, which are

the same blocks that would run if only the Infrared Sensor was triggered. In other words, the

program ignores the Color Sensor in this case.

Add the blocks to the switch that make the robot say “Detected” and turn to the left for true, and

that make the robot say “Hello, good morning” for false (see Figure 19-20).

Now run the program and test it. If you use a USB cable to program the robot, you need to

manually position the head straight forward to make room for the USB cable. To do this, turn

the gears attached to the Medium Motor. Use the Download button to send the program to your

robot, unplug the USB cable, and then start the program manually using the EV3 buttons.

The robot should now walk around autonomously and greet you if you shake its hand.

https://www.safaribooksonline.com/library/view/the-lego-mindstorms/9781457185366/ch19.html#step_3_the_switch_block_determines_which
https://www.safaribooksonline.com/library/view/the-lego-mindstorms/9781457185366/ch19.html#step_3_the_switch_block_determines_which
https://www.safaribooksonline.com/library/view/the-lego-mindstorms/9781457185366/ch19.html#step_4_the_robot_turns_left_if_it_detect

Figure 19-18. Step 2: The inner loop makes the robot walk forward until the robot detects an obstacle or a

handshake.

Figure 19-19. Step 3: The Switch block determines which sensor triggered the loop to end. If the Infrared Sensor

was triggered, the blocks at the top of the switch will run (true); if it wasn’t, the blocks at the bottom of the switch
will run (false).

Figure 19-20. Step 4: The robot turns left if it detects an obstacle (true) and stops and greets you if it detects a
handshake (false).

further exploration

You’ve reached the end of this book. Congratulations! I hope you’ve enjoyed learning the ins

and outs of the LEGO MINDSTORMS EV3 robotics set as well as building and programming

the robot projects presented in this book. You’re now ready to start creating robots on your own

and sharing your ideas with the world. Whether your robots drive, grab, walk, or talk, the

possibilities are endless with LEGO MINDSTORMS EV3!

But before you close this book, try the following Discoveries to expand the program for LAVA

R3X to make it more interactive. When you’re ready, be sure to check out building and

programming instructions for a robot that sorts LEGO bricks by color and size (as in Figure 19-

21) on the book’s companion website, http://ev3.robotsquare.com/.

DISCOVERY #126: DANCING ROBOTS!

Difficulty: Time:

https://www.safaribooksonline.com/library/view/the-lego-mindstorms/9781457185366/ch19.html#feel_like_building_another_robotquestion
https://www.safaribooksonline.com/library/view/the-lego-mindstorms/9781457185366/ch19.html#feel_like_building_another_robotquestion
http://ev3.robotsquare.com/

LAVA R3X is able to walk by placing the leg mechanisms in opposite positions and running both motors

forward. What happens if you place the legs in the same position and then turn both motors at 10% speed

for five rotations but in opposite directions? (You don’t have to worry about motor synchronization in this

Discovery.)

HINT

Once you’ve placed the legs in opposite positions with the Reset My Block, you can easily place the legs in

the same position by rotating one motor forward. How many degrees should you rotate it?

Figure 19-21. Feel like building another robot? The BRICK SORT3R sorts LEGO bricks by color (red, yellow,

green, and blue) and size (2×2 and 2×4). You can find building and programming instructions at the book’s

companion website.

DISCOVERY #127: WHAT’S THE DIFFERENCE?

Difficulty: Time:

To get a better understanding of the OnSync My Block, display the difference between the two motor

positions on the screen. To accomplish this, place a Display block in the OnSync My Block that displays

the value of the last Math block of Figure 19-9. Then place the modified OnSync My Block in a loop

configured to run forever. What happens to the difference if you slow one motor down manually by holding

the leg still? How does the other motor try to compensate for the difference? (Don’t try this for more than a

few seconds!)

DISCOVERY #128: ROBOT COACH!

Difficulty: Time:

https://www.safaribooksonline.com/library/view/the-lego-mindstorms/9781457185366/ch19.html#step_2_these_blocks_further_process_the

Can you make the robot detect how long you work at your desk? Program LAVA R3X to display the

amount of time you’ve been working at your desk, and make it advise you to take a break after one hour. If

it detects that you’re not following the advice, make it shake its head and play sounds to get your attention.

DISCOVERY #129: ROBOT FOLLOWER!

Difficulty: Time:

Can you program the robot look at you as it walks by making its head turn in the direction of the infrared

beacon? Make the speed of the Medium Motor proportional to the Beacon Heading value using a technique

similar to the one you used for the SNATCH3R in Figure 18-20. Note that the robot’s head cannot make a

full turn. How do you limit the motor’s movement in your program so that it doesn’t try to turn farther than

it actually can?

DISCOVERY #130: SYNCHRONIZED PACE!

Difficulty: Time:

In the ObstacleAvoid program, LAVA R3X’s arms move left and right, independent of the pace at which

the robot walks. Can you synchronize both movements so that it walks in a more elegant and realistic way?

DISCOVERY #131: REMOTE WALK!

Difficulty: Time:

Can you make a program that allows you to control LAVA R3X remotely so that it can walk in any

direction? You can use the techniques you learned in Chapter 8, but you’ll need to use the techniques you

learned in this chapter to ensure that the motors in the robot’s legs remain synchronized. How do you make

the robot begin to walk or turn when you press a button on the remote and stop when you release it?

DISCOVERY #132: TAMAGOTCHI!

Difficulty: Time:

Can you turn LAVA R3X into a lifelike robot with different moods and behaviors? Use the infrared remote

to command the robot to walk, talk, eat, and sleep. Create Numeric variables to keep track of the robot’s

health by monitoring its hunger level, energy level, and happiness.

Make the energy level decrease with each step the robot takes, and make it increase when you command

the robot to sleep. Similarly, make the hunger level increase while the robot is walking, and make it

decrease when you feed the robot. Make the robot’s happiness slowly decrease over time, and make it

increase each time you shake the robot’s hand.

If the hunger level, energy level, or happiness reaches a certain critical limit, the robot should ignore new

commands and make its own decisions. For example, if the robot is too tired (its energy level is below

10%), it should fall asleep for a while to restore its energy level. Or, if it’s sad, you can make it say “No!”

and cry each time you try to send new commands.

https://www.safaribooksonline.com/library/view/the-lego-mindstorms/9781457185366/ch18.html#step_2_driving_forward_while_adjusting_t
https://www.safaribooksonline.com/library/view/the-lego-mindstorms/9781457185366/ch08.html

Display the energy level, hunger level, and happiness on the EV3 screen so you can diagnose the robot’s

health and mood. Experiment with different types of behavior, and add sounds and light effects to make the

robot show emotions and appear more lifelike. For example, display smiling eyes on the EV3 screen to

show that the robot is happy, and have it play snoring sounds while the robot sleeps.

You can use the flow diagram shown in Figure 19-22 as a guide when designing your program, but feel

free to come up with your own ideas.

FIGURE 19-22. ONE POSSIBLE IMPLEMENTATION OF DISCOVERY #132. NOTE THAT THIS IS A

VERY BASIC OVERVIEW TO HELP YOU GET STARTED; EACH STEP LISTED HERE MAY

CONSIST OF MANY PROGRAMMING BLOCKS OF YOUR CHOICE, INCLUDING MANY MORE
SWITCH AND LOOP BLOCKS.

DESIGN DISCOVERY #30: BIPED ROBOT!

Building: Programming:

Can you create an animal robot that walks on two legs? Remove the robot’s upper body and the EV3 brick

so that only the legs remain. Now you can create any type of robot that walks on two legs. Can you build an

ostrich or perhaps a dinosaur? You can use the Medium Motor to control the robot’s head, tail, or even its

claws. Use the My Blocks you made in this chapter to control the legs of your robot.

https://www.safaribooksonline.com/library/view/the-lego-mindstorms/9781457185366/ch19.html#one_possible_implementation_of_discovery

